Wednesday, May 6, 2020
8 Key Element for a Business Model Free Essays
E-commerce: business. technology. society. We will write a custom essay sample on 8 Key Element for a Business Model or any similar topic only for you Order Now E-commerce E commerce Business. Technology. Society gy y Kennethà C. Laudon Copyright à © 2011 Pearson Education, Ltd. Chapter 5 Businessà Modelsà forà E? commerce Copyright à © 2007Pearson Education, Ltd. 2011 Pearson Education, Inc. Slide 1-2 E-commerce Business Models Businessà model d l Setà ofà plannedà activitiesà designedà toà resultà inà aà Set of planned activities designed to result in a profità inà aà marketplace Businessà plan Describesà aà firm sà businessà model Describes a firmââ¬â¢s business model E commerceà businessà model E? commerce business model Uses/leveragesà uniqueà qualitiesà ofà Internetà andà Web W b Slide 2-3 8 Key Elements of Business Model 1. 2. 3. 4. 5. 6. 7. 8. Valueà proposition Revenueà model Marketà opportunity Market opportunity Competitiveà environment Competitiveà advantage Marketà strategy Market strategy Organizationalà Development Managementà team Slide 2-4 1. Value Proposition Whyà shouldà theà customerà buyà fromà you? h h ld h b f ? Successfulà e? ommerceà valueà S f l l propositions: Personalization/customization Reductionà ofà productà search,à priceà discoveryà costs Facilitationà ofà transactionsà byà managingà productà delivery Slide 2-5 2. Revenue Model Howà willà theà firmà earnà revenue,à generateà p profits,à andà produceà aà superiorà returnà onà p p investedà capital? Majorà types: Advertisingà revenueà model g Subscriptionà revenueà model Transactionà feeà revenueà model Transaction fee revenue model Salesà revenueà model Affiliateà revenueà model Slide 2-6 3. Market Opportunity Whatà marketspaceà doà youà intendà toà h k d d serveà andà whatà isà itsà size? Marketspace:à Areaà ofà actualà orà potentialà commercialà valueà inà whichà companyà intendsà toà operate in which company intends to operate Realisticà marketà opportunity:à Definedà byà revenueà potentialà inà eachà marketà nicheà inà whichà companyà hopesà toà potential in each market niche in which company hopes to compete Marketà opportunityà typicallyà dividedà intoà M k t t it t i ll di id d i t smallerà niches Slide 2-7 4. Competitive Environment Whoà elseà occupiesà yourà intendedà h l d d marketspace? p Otherà companiesà sellingà similarà productsà inà theà sameà marketspace Includesà bothà directà andà indirectà competitors Influencedà by: Influenced by: Numberà andà sizeà ofà activeà competitors Eachà competitor sà marketà share Each competitorââ¬â¢s market share Competitorsââ¬â¢Ã profitability Competitors pricing Competitorsââ¬â¢Ã pricing Slide 2-8 5. Competitive Advantage Achievedà whenà firm: h d h f Producesà superiorà productà à or Produces superior product or Canà bringà productà toà marketà atà lowerà priceà thanà competitors th tit Importantà concepts: p p Asymmetries First? moverà advantage Fi t d t Unfairà competitiveà advantage Leverage Slide 2-9 6. Market Strategy Howà doà youà planà toà promoteà yourà productsà orà servicesà toà attractà yourà products or services to attract your targetà audience? Detailsà howà aà companyà intendsà toà enterà market andà attractà customers Bestà businessà conceptsà willà failà ifà notà properlyà marketedà toà potentialà customers k d i l Slide 2-10 7. Organizational Development Whatà typesà ofà organizationalà structuresà withinà theà firmà areà necessaryà toà carryà outà within the firm are necessary to carry out theà businessà plan? Describesà howà firmà willà organizeà work Typicallyà dividedà intoà functionalà departments Asà companyà grows,à hiringà movesà fromà generalistsà toà As company grows hiring moves from generalists to specialists Slide 2-11 8. Management Team Whatà kindsà ofà experiencesà andà backgroundà areà importantà forà theà background are important for the companyââ¬â¢sà leadersà toà have? Employeesà areà responsibleà forà makingà theà businessà modelà work Strongà managementà teamà givesà instantà credibilityà toà outsideà investors Strongà managementà teamà mayà notà beà ableà toà salvageà aà weakà businessà model,à butà shouldà beà ableà toà changeà theà modelà andà redefineà theà businessà asà ità becomesà necessary Slide 2-12 Insight on Business Online Grocers: Finding and Executing the Right Model g g Class Discussion Slide 2-13 Categorizing E-commerce Business Models Noà oneà correctà way Weà categorizeà businessà modelsà accordingà to: We categorize business models according to: E? commerceà sectorà (B2C,à B2B,à C2C) Typeà ofà e? commerceà technology;à i. e. m? commerce Type of e commerce technology; i e m commerce Similarà businessà modelsà appearà inà moreà thanà oneà sector Someà companiesà useà multipleà businessà Some companies use multiple business models;à e. g. eBay Slide 2-14 B2C Business Models: Portal Searchà plusà anà integratedà packageà ofà contentà andà services Revenueà models:à d l Advertising,à referralà fees,à transactionà fees,à subscriptions g p Variations: Horizontalà /à General Verticalà /à Specializedà (Vortal) Vertical / Specialized (Vortal) Pureà Search Slide 2-15 Insight on Technology Can Bing Bong Google? Class Discussion Slide 2-16 B2C Models: E-tailer Onlineà versionà ofà traditionalà retailer Revenueà model:à Sales Variations: Virtualà merchant Virtual merchant Bricks? and? clicks Catalogà merchant C t l h t Manufacturer? direct Lowà barriersà toà entry Slide 2-17 B2C Models: Content Provider Digitalà contentà onà theà Web News,à music,à video Revenueà models:à Revenue models: Subscription;à payà perà downloadà (micropayment);à advertising;à affiliateà referralà fees Variations: Contentà owners Syndication S di i Webà aggregators Slide 2-18 B2C Models: Transaction Broker Processà onlineà transactionsà forà consumers Primaryà valueà propositionââ¬âsavingà timeà andà money Revenueà model:à R d l Transactionà fees Industriesà usingà thisà model: Financialà services Travelà services Jobà placementà services Slide 2-19 B2C Models: Market Creator Createà digitalà environmentà whereà buyersà andà sellersà canà meetà andà transact Examples:à Priceline eBay y Revenueà model:à Transactionà fees Revenue model: Transaction fees Slide 2-20 B2C Models: Service Provider Onlineà services e. g. Google:à Googleà Maps,à Gmail,à etc. Valueà propositionà Value proposition Valuable,à convenient,à time? saving,à low? costà alternativesà toà traditionalà serviceà providers t diti l i id Revenueà models: Revenue models: Salesà ofà services,à subscriptionà fees,à advertising,à salesà ofà marketingà data marketing data Slide 2-21 B2C Models: Community Provider Provideà onlineà environmentà (socialà network)à whereà peopleà withà similarà interestsà canà transact,à shareà content,à andà , , communicateà E. g. Facebook,à MySpace,à LinkedIn,à Twitter Revenueà models: R d l Typicallyà hybrid,à combiningà advertising, subscriptions,à sales,à transactionà fees,à affiliateà fees Slide 2-22 B2B Business Models Netà marketplaces E? istributor E procurement E? procurement Exchange Industryà consortium Industry consortium Privateà industrialà network Private industrial network Singleà firm Industry? wide Industry wide Slide 2-23 B2B Models: E-distributor Version à ofà retailà andà wholesaleà store,à , MROà goodsà andà indirectà goods Ownedà byà oneà companyà seekingà toà serveà manyà customers Revenueà model:à Salesà ofà goods Example:à Grainger. com Slide 2-24 B2B Models: E-procurement Createsà digitalà marketsà whereà participantsà transactà forà indirectà goods B2Bà serviceà providers,à applicationà serviceà providersà (ASPs) B2B service providers application service providers (ASPs) Revenueà model: Serviceà fees,à supply? chainà management,à fulfillmentà services Example:à Ariba Slide 2-25 B2B Models: Exchanges Independentlyà ownedà verticalà digitalà p y g marketplaceà forà directà inputs Revenueà model:à Transaction,à commissionà fees Revenue model Transaction commission fees C eate po e u co pet t o bet ee Createà powerfulà competitionà betweenà suppliers Tendà toà forceà suppliersà intoà powerfulà priceà T d f li i f l i competition;à numberà ofà exchangesà hasà droppedà dramatically d dd ll Slide 2-26 B2B Models: Industry Consortia Industry? wnedà verticalà digitalà marketplaceà openà toà selectà suppliers Moreà successfulà thanà exchanges More successful than exchanges Sponsoredà byà powerfulà industryà players Strengthenà traditionalà purchasingà behavior Revenueà model:à Transaction,à commissionà fees R d l T ti i i f Example:à Exostar Example: Exostar Slide 2-27 Private Industrial Networks Designedà toà coordinateà flowà ofà communicationà amongà firmsà engagedà inà businessà together fi di b i h Electronicà dataà interchangeà (EDI) Singleà firmà networks Mostà commonà formà M t f Example:à Wal? Martââ¬â¢sà networkà forà suppliers Industry? wideà networks Oftenà evolveà outà ofà industryà associationsà Often evolve out of industry associations Example:à Agentrics Slide 2-28 Other E-commerce Business Models Consumer? to? consumerà (C2C) eBay,à Craigslist Peer? to? peerà (P2P) Peer to peer (P2P) Theà Pirateà Bay,à Cloudmark M? commerce: Technologyà platformà continuesà toà evolve Technology platform continues to evolve iPhone,à smartphonesà energizingà interestà inà m? commerceà pp apps Slide 2-29 Insight on Society Where R U? Not Here! Class Discussion Slide 2-30 E-commerce Enablers: Gold Rush Model E? commerceà infrastructureà companiesà p haveà profitedà theà most: Hardware,à software,à networking,à security E? commerceà softwareà systems,à paymentà systems Mediaà solutions,à performanceà enhancement CRMà software CRM software Databases Hostingà services,à etc. Slide 2-31 How Internet Web Change Business E? commerceà changesà industryà structureà g y byà changing: Basisà ofà competitionà amongà rivals Barriersà toà entry y Threatà ofà newà substituteà products Strengthà ofà suppliers Bargainingà powerà ofà buyers Bargaining power of buyers Slide 2-32 Industry Value Chains Setà ofà activitiesà performedà byà suppliers,à manufacturers,à transporters,à distributors,à andà f di ib d retailersà thatà transformà rawà inputsà intoà finalà productsà andà servicesà Internetà reducesà costà ofà informationà andà Internet reduces cost of information and otherà transactionalà costs Leadsà toà greaterà operationalà efficiencies,à loweringà cost,à prices,à addingà valueà forà lowering cost prices adding value for customers Slide 2-33 E-commerce Industry Value Chains Figureà 5. 4 Slide 2-34 Firm Value Chains Activitiesà thatà aà firmà engagesà inà toà create inalà productsà fromà rawà inputs Eachà stepà addsà value Effectà ofà Internet: Eff fI Increasesà operationalà efficiency p y Enablesà productà differentiation Enablesà preciseà coordinationà ofà stepsà inà chain E bl i di ti f t i h i Slide 2-35 E-commerce Firm Value Chain s Figureà 5. 5 Slide 2-36 Firm Value Webs Networkedà businessà ecosystemà Usesà Internetà technologyà toà coordinateà theà valueà chainsà ofà businessà partners l h i fb i Coordinatesà aà firmââ¬â¢sà suppliersà withà itsà ownà C di t fi ââ¬â¢ li ith it productionà needsà usingà anà Internet? basedà supplyà chainà managementà system Slide 2-37 Internet-Enabled Value Web bl d l b Figureà 5. 6 Slide 2-38 Business Strategy Planà forà achievingà superiorà long? termà returnsà onà theà capitalà investedà inà aà businessà firmà business firm Fourà Genericà Strategies 1. Differentiationà 2. Cost 3. Scope 4. 4 Focus Slide 2-39 Chapter 6 E-commerce Marketing Copyright à © 2010 Pearson Education, Ltd. 2011 Pearson Education, Inc. Slide 6-40 Netflix N fli Strengthens and Defends Its Brand Class Discussion Slide 6-41 Consumers Online: Internet Audience Consumer Behavior Aroundà 70%à (82à million)à U. S. ouseholdsà haveà Around 70% (82 million) U S households have Internetà accessà inà 2010 Growthà rateà hasà slowed Intensityà andà scopeà ofà useà bothà increasing d f b h Someà demographicà groupsà haveà muchà higherà Some demographic groups have much higher percentagesà ofà onlineà usageà thanà othersà Gender,à age,à ethnicity,à communityà type,à income,à education Slide 6-42 Consumers Online: Internet Audience Consumer Behavior Broadbandà audienceà vs. dial? upà audience Purchasingà behaviorà affectedà byà neighborhood Lifestyleà andà sociologicalà impacts Useà ofà Internetà byà children,à teens Useà ofà Internetà asà substituteà forà otherà socialà activities Mediaà choices Traditionalà mediaà competesà withà Internetà forà attention Traditional media competes with Internet for attention Slide 6-43 Consumer Behavior Models Studyà ofà consumerà behavior Socialà scienceà Attemptsà toà explainà whatà consumersà purchaseà Attempts to explain what consumers purchase andà where,à when,à howà muchà andà whyà theyà buy Consumerà behaviorà models Predictà wideà rangeà ofà consumerà decisions Predict wide range of consumer decisions Basedà onà backgroundà demographicà factorsà andà otherà intervening,à moreà immediateà variablesà h i i i di i bl Slide 6-44 General Model of Consumer Behavior Figureà 6. Slide 6-45 Background Demographic Factors Culture:à Broadestà impact Subcultureà (ethnicity,à age,à lifestyle,à geography) S b lt ( th i it lif t l h ) Social Referenceà groups Directà à referenceà groups g p Indirectà referenceà group s Opinionà leadersà (viralà influencers) Lifestyleà groupsà f l Psychological Psychologicalà profiles Slide 6-46 Online Purchasing Decision Psychographicà research Combinesà demographicà andà psychologicalà data Combines demographic and psychological data Dividesà marketà intoà groupsà basedà onà socialà class,à lifestyle,à and/orà personalityà characteristics and/or personality characteristics Fiveà stagesà inà theà consumerà decisionà process: 1. 2. 3. 4. 5. Awarenessà ofà need Searchà forà moreà information Evaluationà ofà alternatives Actualà purchaseà decision Actual purchase decision Post? purchaseà contactà withà firm Slide 6-47 Consumer D i i C Decision Process P Supporting Communications Figureà 6. 3 Slide 6-48 Model of Online Consumer Behavior Decisionà processà similarà forà onlineà andà offlineà behavior Generalà onlineà behaviorà model Consumerà skills Productà characteristics Attitudesà towardà onlineà purchasing Perceptionsà aboutà controlà overà Webà environment p Webà siteà features Clickstreamà behavior:à Transactionà logà forà Clickstream behavior: Transaction log for consumerà fromà searchà engineà toà purchase Slide 6-49 Model of Online Consumer Behavior Figureà 6. 4 Slide 6-50 Model of Online Consumer Behavior Clickstreamà factorsà include: Numberà ofà daysà sinceà lastà visit Number of days since last visit Speedà ofà clickstreamà behavior Numberà ofà productsà viewedà duringà lastà visit b f d i dd i l ii Numberà ofà pagesà viewed Supplyingà personalà information Numberà ofà daysà sinceà lastà purchase Numberà ofà pastà purchases Clickstreamà marketing Clickstream marketing Slide 6-51 Shoppers: Browsers Buyers Shoppers:à 87%à ofà Internetà users 72%à buyers 72% buyers 16%à browsersà (purchaseà offline) One? thirdà offlineà retailà purchasesà influencedà byà O thi d ffli t il h i fl db onlineà activities Onlineà trafficà alsoà influencedà byà offlineà brandsà andà shopping pp g E? commerceà andà traditionalà commerceà areà coupled: partà ofà aà continuumà ofà consumingà behavior part of a continuum of consuming behavior Slide 6-52 Online Shoppers Buyers Figureà 6. 5 Slide 6-53 What Consumers Shop Buy Online Bigà ticketà itemsà ($500à plus) Travel,à computerà hardware,à consumerà electronics Expandingà Consumersà moreà confidentà inà purchasingà costlierà items Smallà ticketà itemsà ($100à orà less) ($ ) Apparel,à books,à officeà supplies,à software,à etc. Soldà byà firstà moversà onà Web Sold by first movers on Web Physicallyà smallà items Highà marginà itemsà Broadà selectionà ofà productsà available Slide 6-54 What Consumers Buy Online Figureà 6. 6 Slide 6-55 Intentional Acts: How Shoppers Find Vendors Online pp Searchà enginesà (59%) S h i (59%) Couponà Webà sitesà (29%) Coupon Web sites (29%) Comparisonà shoppingà sitesà (27%) E? ailà newslettersà (25%) Onlineà shoppersà areà highlyà intentional,à lookingà forà specificà products,à companies,à services Slide 6-56 Tableà 6. 6 Slide 6-57 Trust, Utility, Opportunism in Online Mark ets Twoà mostà importantà factorsà shapingà decisionà Two most important factors shaping decision toà purchaseà online: Utility:à U ili Betterà prices,à convenience,à speed Trust: Asymmetryà ofà informationà canà leadà toà opportunisticà behaviorà byà sellers Sellersà canà developà trustà byà buildingà strongà reputationsà forà honesty,à fairness,à deliveryà Slide 6-58 Basic Marketing Concepts Marketing Strategiesà andà actionsà toà establishà relationshipà Strategies and actions to establish relationship withà consumerà andà encourageà purchasesà ofà p productsà andà services Addressesà competitiveà situationà ofà industriesà andà firms Seeksà toà createà unique,à highlyà differentiatedà productsà orà servicesà thatà areà producedà orà suppliedà byà oneà trustedà firm Unmatchableà featureà set Avoidanceà ofà becomingà commodity Slide 6-59 Feature Sets Threeà levelsà ofà productà orà service 1. Coreà product e. g. cellà phone g p 2. Actualà product Characteristicsà thatà deliverà coreà benefits Ch t i ti th t d li b fit e. g. wideà screenà thatà connectsà toà Internet 3. Augmentedà product Additionalà benefits Basisà forà buildingà theà productââ¬â¢sà brand e. g. productà warranty Slide 6-60 Feature Set Figureà 6. 7 Slide 6-61 Products, Brands Branding Process Brand: Expectationsà consumersà haveà whenà consuming,à orà thinkingà aboutà consuming,à aà specificà product Mostà importantà expectations:à Quality,à reliability,à Most important expectations: Quality reliability consistency,à trust,à affection,à loyalty,à reputation Branding:à Processà ofà brandà creation Branding: Process of brand creation Closedà loopà marketing Brandà strategy Brandà equity Brand eq it Slide 6-62 Marketing A ti iti M k ti Activities: From Products to Brands Figureà 6. 8 Slide 6-63 STP: Segmenting, Targeting, Positioning Majorà waysà usedà toà segment,à targetà customers 1. 2. 3. 4. 5. 6. Behavioral B h i l Demographic Psychographic h hi Technical Contextual Search Withinà segment,à productà isà positioned andà brandedà asà aà unique,à high? valueà product,à especiallyà suitedà toà q g p p y needsà ofà segmentà customers Slide 6-64 Are Brands Rational? Forà consumers,à aà qualifiedà yes: Brandsà introduceà marketà efficiencyà byà reducingà searchà andà decision? makingà costs Forà businessà firms,à aà definiteà yes: Aà majorà sourceà ofà revenue Lowerà customerà acquisitionà cost Increasedà customerà retention Successfulà brandà constitutesà aà long? astingà (thoughà notà necessarilyà permanent)à unfairà competitiveà advantage Slide 6-65 Can Brands Survive Internet? Brands Price Dispersion p Earlyà postulation:à Lawà o fà Oneà Price ;à endà ofà brands Early postulation: ââ¬Å"Law of One Priceâ⬠; end of brands Instead: Consumersà stillà payà premiumà pricesà forà differentiatedà products E? commerceà firmsà relyà heavilyà onà brandsà toà attractà customersà andà chargeà premiumà prices Substantialà priceà dispersion Largeà differencesà inà priceà sensitivityà forà sameà product Large differences in price sensitivity for same product ââ¬Å"Libraryà effectâ⬠Slide 6-66 Revolution in Internet Marketing Technology Threeà broadà impacts: Scopeà ofà marketingà communicationsà broadenedà Richnessà ofà marketingà communicationsà increased g Informationà intensityà ofà marketplaceà expanded Internetà marketingà technologies: Internet marketing technologies: Webà transactionà logs Cookiesà andà Webà bugs Cookies and Web bugs Databases,à dataà warehouses,à dataà mining Advertisingà networks Customerà relationshipà managementà systems Slide 6-67 Web Transaction Logs Builtà intoà Webà serverà software Recordà userà activityà atà Webà site y Webtrends:à Leadingà logà analysisà tool Providesà muchà marketingà data,à especiallyà à Provides much marketing data especially combinedà with: Registrationà forms R i i f Shoppingà cartà database Answersà questionsà suchà as: Whatà areà majorà patternsà ofà interestà andà purchase? Afterà homeà page,à whereà doà usersà goà first? Second? Slide 6-68 Cookies Web Bugs Cookies: Smallà textà fileà Webà sitesà placeà onà visitorââ¬â¢sà PCà everyà timeà theyà visit,à asà specificà pagesà areà accessed Provideà Webà marketersà withà veryà quickà meansà ofà identifyingà customerà andà understandingà priorà behavior Flashà cookies Webà bugs: Tinyà (1à pixel)à graphicsà embeddedà inà e mailà andà Webà sites Tiny (1 pixel) graphics embedded in e? mail and Web sites Usedà toà automaticallyà transmità informationà aboutà userà andà page being viewed to monitoring server pageà beingà viewedà toà monitoringà server Slide 6-69 Insight on Society g y Every Move You Make, Every Click You Make, Weââ¬â¢ll Be Tracking You , g Class Discussion Slide 6-70 Databases Database:à à Storesà recordsà andà attributes Databaseà managementà systemà (DBMS):à Softwareà usedà toà create,à maintain,à andà accessà databases SQLà (Structuredà Queryà Language): Industry? standardà databaseà queryà andà manipulationà languageà usedà inà y q y p g g aà relationalà database Relationalà database: Representsà dataà asà two? dimensionalà tablesà withà recordsà organizedà inà rowsà andà attributesà inà columns;à dataà withinà differentà tablesà canà beà flexiblyà relatedà asà longà asà theà tablesà shareà aà commonà dataà element flexibly related as long as the tables share a common data element Slide 6-71 Relational Database View of E-commerce Customers Figureà 6. 12 Slide 6-72 Data Warehouses Data Mining Dataà warehouse: Collectsà firm sà transactionalà andà customerà dataà inà singleà Collects firmââ¬â¢s transactional and customer data in single locationà forà offlineà analysisà byà marketersà andà siteà managers Dataà mining: Analyticalà techniquesà toà findà patternsà inà data,à modelà Analytical techniques to find patterns in data model behaviorà ofà customers,à developà customerà profiles Query? drivenà dataà mining Query driven data mining Model? drivenà dataà mining Rule? basedà dataà mining l b dd Collaborativeà filtering Slide 6-73 Data Mining Personalization Figureà 6. 13 Slide 6-74 Insight on Technology The Long T il Big Hits and Big Misses Th L Tail: Bi Hi d Bi Mi Class Discussion Slide 6-75 Customer Relationship Management ( (CRM) Systems ) y Recordà allà contactà thatà customerà hasà withà firm Generatesà customerà profileà availableà toà everyoneà in firmà withà needà toà ââ¬Å"knowà theà customerâ⬠fi ith d t ââ¬Å"k th t â⬠Customer profiles can contain: ustomerà profilesà canà contain: Mapà ofà theà customerââ¬â¢sà relationshipà withà theà firm Productà andà usageà summaryà data Demographicà andà psychographicà data Profitabilityà measures Contactà historyà Contact history Marketingà andà salesà information Slide 6-76 Customer Relationship Management System Figureà 6. 14 Slide 6-77 Market Entry Strategies Figureà 6. 15 Slide 6-78 Establishing Customer Relationship Advertisingà Networks Bannerà advertisements Adà serverà selectsà appropriateà bannerà adà basedà onà Ad server selects appropriate banner ad based on cookies,à Webà bugs,à backendà userà profileà databases Permissionà marketing Permission marketing Affiliateà marketing g Slide 6-79 How Advertising Network Works e. g. , DoubleClick Figureà 6. 16 Slide 6-80 Establishing Customer Relationship (contââ¬â¢d) Viralà marketing Gettingà customersà toà passà alongà companyââ¬â¢sà marketingà messageà toà friends,à family,à andà colleagues Blogà marketing Usingà blogsà toà marketà goodsà throughà commentaryà andà U i bl k d h h d advertising Socialà networkà marketing,à socialà shoppingà Mobileà marketing Mobile marketing Slide 6-81 Insight on Business Social Network Marketing: Letââ¬â¢s Buy Together Class Discussion Slide 6-82 Establishing Customer Relationship (contââ¬â¢d) Wisdomà ofà crowdsà (Surowiecki,à 2004) ( , ) Largeà aggregatesà produceà betterà estimatesà andà judgments Examples:à E l Predictionà markets Folksonomies Socialà tagging Social tagging Brandà leveraging Slide 6-83 Customer Retention: Strengthening Customer Relationship p Massà marketing Mass marketing Directà marketing Micromarketingà Micromarketing Personalized,à one? to? oneà marketingà à Segmentingà marketà onà preciseà andà timelyà understandingà ofà Segmenting market on precise and timely understanding of individualââ¬â¢sà needs Targetingà specificà marketingà messagesà toà theseà individuals Positioningà productà vis? a? visà competitorsà toà beà trulyà unique Personalization Canà increaseà consumersà senseà ofà control,à freedom Canà alsoà resultà inà unwantedà offersà orà reducedà anonymity Slide 6-84 Mass Market-Personalization Continuum Figureà 6. 17 Slide 6-85 Other Customer Retention Marketing Technics Customization Customerà co? production Transactiveà content:à Combineà traditionalà contentà withà dynamicà informationà tailoredà toà eachà userââ¬â¢sà profile Customerà service FAQs Q Real? timeà customerà serviceà chatà systems Automatedà responseà systems Automated response systems Slide 6-86 Net Pricing Strategies Pricing Integralà partà ofà marketingà strategy I t l t f k ti t t Traditionallyà basedà on:à Fixedà costà Variableà costsà Demandà curve Priceà discrimination Price discrimination Sellingà productsà toà differentà peopleà andà groupsà basedà onà willingnessà toà pay Slide 6-87 Net Pricing Strategies (contââ¬â¢d) Freeà andà freemium Canà beà usedà toà buildà marketà awareness Versioning Creatingà multipleà versionsà ofà productà andà sellingà essentiallyà sameà productà toà differentà marketà segmentsà atà differentà prices at different prices Bundling Offersà consumersà twoà orà moreà goodsà forà oneà price Off t d f i Dynamicà pricing: Auctions Yieldà management Slide 6-88 Channel Management Strategies Channels: Differentà methodsà byà whichà goodsà canà beà distributedà andà sold Channelà conflict: Whenà newà venueà forà sellingà productsà orà servicesà threatensà gp orà destroysà existingà salesà venues E. g. onlineà airline/travelà servicesà andà à traditionalà offlineà travelà agencies Someà manufacturersà areà usingà partnershipà gp p modelà toà avoidà channelà conflictà Slide 6-89 Chapter 7: E-commerce Marketing Communications Chapter 7 E-commerce Advertising Copyright à © 2010 Pearson Education, Ltd. 2011 Pearson Education, Inc. Slide 7-90 Video Ads: Shoot, Click, Buy Class Discussion Slide 7-91 Marketing Communications Twoà mainà purposes: Salesà ââ¬â promotionalà salesà communicationsà Brandingà ââ¬â b di B di brandingà communications i i Onlineà marketingà communications Online marketing communications Takesà manyà forms Onlineà ads,à e? mail,à publicà relations,à Webà sites Slide 7-92 Online Advertising li d i i $25à billion,à 15%à ofà allà advertising Advantages: Internetà isà whereà audienceà isà moving g Adà targeting Greaterà opportunitiesà forà interactivity Greater opportunities for interactivity Disadvantages: Costà versusà benefit Howà toà adequatelyà measureà results Supplyà ofà goodà venuesà toà displayà ads Slide 7-93 Online Advertising from 2002-2014 Figureà 7. Slide 7-94 Forms of Online Advertisements Displayà ads Richà media Videoà ads Searchà engineà advertising Socialà network,à blog,à andà gameà advertising Social network blog and game advertising Sponsorships Referralsà (affiliateà relationshipà marketing) E? mailà marketing g Onlineà catalogs Slide 7-95 Display Ads Bannerà ads Rectangularà boxà linkingà toà advertiserââ¬â¢sà Webà site IABà guidelines e. g. Fullà bannerà isà 468à xà 60à pixels,à 13K e g Full banner is 468 x 60 pixels 13K Pop? upà ads Appearà withoutà userà callingà forà them Provokeà negativeà consumerà sentiment g Twiceà asà effectiveà asà normalà bannerà ads Pop? nderà ads:à Openà beneathà browserà window Pop under ads: Open beneath browser window Slide 7-96 Rich Media Ads Useà Flash,à DHTML,à Java,à JavaScript Aboutà 7%à ofà allà onlineà advertisingà expenditures Tendà toà beà moreà aboutà branding d b b b di Boostà brandà awarenessà byà 10% Boost brand awareness by 10% IABà standardsà limità length Interstitials Superstitials Slide 7-97 Video Ads Fastestà growingà formà ofà onlineà advertisement IABà stan dards Linearà videoà ad Non? linearà videoà ad In? bannerà videoà ad In? textà videoà ad Ad placement Advertisingà networks Advertisingà exchanges Bannerà swapping Slide 7-98 Search Engine Advertising h i d i i Almostà 50%à ofà onlineà adà spendingà inà 2010 Types: Paidà inclusionà orà rank Paid inclusion or rank Inclusionà inà searchà results Sponsoredà linkà areas p Keywordà advertising e. g. Googleà AdWords e g Google AdWords Networkà keywordà advertisingà (contextà advertising) d ii ) e. g. Googleà AdSense Slide 7-99 Search Engine Advertising (contââ¬â¢d) Nearlyà idealà targetedà marketing Nearly ideal targeted marketing Issues:à Disclosureà ofà paidà inclusionà andà placementà practices Clickà fraudà Adà nonsenseà Slide 7-100 Mobile Advertising Halfà ofà U. S. Internetà usersà accessà Internetà Half of U. S. Internet users access Internet withà mobileà devices Currentlyà smallà market,à butà fastestà growingà platformà (35%) growing platform (35%) Googleà andà Appleà inà raceà toà developà Google and Apple in race to develop mobileà advertisingà platform AdMob,à iAd Slide 7-101 Sponsorships Referrals Sponsorships Paidà effortà toà tieà advertiser sà nameà toà Paid effort to tie advertiserââ¬â¢s name to particularà information,à event,à venueà inà aà wayà thatà reinforcesà brandà inà positiveà yetà notà overtlyà that reinforces brand in positive yet not overtly commercialà manner Referrals Affiliateà relationshipà marketing p g Permitsà firmà toà putà logoà orà bannerà adà onà anotherà firmââ¬â¢sà Webà siteà fromà whichà usersà ofà th fi ââ¬â¢ W b it f hi h f thatà siteà canà clickà throughà toà affiliateââ¬â¢sà site Slide 7-102 E-mail Marketing Spam Explosion Directà e? mailà marketingà Lowà cost,à primaryà costà isà purchasingà addresses Spam:à Unsolicitedà commercialà e? mail Spam: Unsolicited commercial e mail Approx. 90%à ofà allà e? mail Effortsà toà controlà spam: Technologyà (filteringà software)à Governmentà regulationà (CAN? SPAMà andà stateà laws) Voluntaryà self? regulationà byà industriesà (DMAà ) y g y Volunteerà efforts Slide 7-103 Percentage of E-mail That Is Spam Figure 7. 6 Slide 7-104 Online Catalogs Equivalentà ofà paper? basedà catalogs Graphics? intense;à useà increasingà withà increaseà inà broadbandà use in broadband use Twoà types: 1. 2. 2 Full? pageà spreads,à e. g. Landsend. com Gridà displays,à e. g. Amazon Grid displays e g Amazon Inà general,à onlineà andà offlineà catalogsà complementà eachà other Slide 7-105 Social Marketing ââ¬Å"Many? to? manyâ⬠à model Usesà digitallyà enabledà networksà toà spreadà ads Blogà advertisingà Blog advertising Onlineà adsà relatedà toà contentà ofà blogs Socialà networkà advertising:à Social network advertising: Adsà onà MySpace,à Facebook,à YouTube,à etc. Gameà advertising:à G d ti i Downloadableà ââ¬Å"advergamesâ⬠Placingà brand? nameà productsà withinà games Slide 7-106 Insight on Society g y Marketing to Children of the Web in the Age of Social Networks g Class Discussion Slide 7-107 Behavioral Targeting Interest? basedà advertising Dataà aggregatorsà developà profiles Data aggregators develop profiles Searchà engineà queries Onlineà browsingà history O li b i hi Offlineà dataà (income,à education,à etc. ) d Informationà soldà toà 3rd partyà advertisers,à whoà deliverà adsà basedà onà profile Adà exchanges Privacyà concerns acy co ce s Consumerà resistance Slide 7-108 Mixing Off-line Online Marketing Communications g Mostà successfulà marketingà campaignsà M t f l k ti i incorporateà bothà onlineà andà offlineà tactics Offlineà marketing Driveà trafficà toà Webà sites Drive traffic to Web sites Increaseà awarenessà andà buildà brandà equity Consumerà behaviorà increasinglyà multi? channel 60%à consumersà researchà onlineà beforeà buyingà offline % y g Slide 7-109 Insight on Business g Are the Very Rich Different From You and Me? Class Discussion Slide 7-110 Online Marketing Metrics: Lexicon Measuringà audienceà sizeà orà marketà share Impressions I i Click? throughà rateà (CTR) View? hroughà rateà (VTR) Vi th h t (VTR) Hits Pageà views P i Stickinessà (duration) Uniqueà visitors Loyalty Reach Recency Slide 7-111 Online Marketing Metrics (contââ¬â¢d) Conversionà ofà visitorà Conversion of visitor toà customer Acquisitionà rate q Conversionà rate Browse ? to? buy? ratio View? to? cartà ratio Vi t t ti Cartà conversionà rate Checkoutà conversionà rateà Checkout conversion rate Abandonmentà rate Retentionà rate Attritionà rate E mailà metrics E? mail metrics Openà rate Deliveryà rate Delivery rate Click? throughà rateà (e mail) (e? mail) Bounce? backà rate Slide 7-112 Online Consumer Purchasing Model Figureà 7. 8 Slide 7-113 How Well Does Online Adv. Work? Ultimatelyà measuredà byà ROIà onà adà campaign Highestà click? throughà rates:à Searchà engineà ads,à Permissionà e mailà campaigns Permission e? mail campaigns Richà media,à videoà interactionà ratesà high Onlineà channelsà compareà favorablyà withà traditional Mostà powerfulà marketingà campaignsà useà multipleà Most powerful marketing campaigns use multiple channels,à includingà online,à catalog,à TV,à radio,à newspapers,à stores newspapers, stores Slide 7-114 Comparative Returns on Investment Figureà 7. 9 Slide 7-115 Costs of Online Advertising Pricingà models Barter Costà perà thousandà (CPM) Costà perà clickà (CPC)à Costà perà actionà (CPA)à Cost per action (CPA) Onlineà revenuesà only Salesà canà beà directlyà correlated Sales can be directly correlated Bothà à online/offlineà revenues Offlineà purchasesà cannotà alwaysà beà directlyà relatedà toà onlineà Offli h t l b di tl l t dt li campaign Inà general,à onlineà marketingà moreà expensiveà onà CPMà In general online marketing more expensive on CPM basis,à butà moreà effective Slide 7-116 Web Site Activity Analysis b i i i l i Figureà 7. 10 Slide 7-117 Insight on Technology Itââ¬â¢s 10 P. M. Do You Know Who Is On Your Web Site? Class Discussion Slide 7-118 Web Site â⬠¦ as Marketing Communications Tool g Webà siteà asà extendedà onlineà advertisement W b i d d li d i Domainà name:à Anà importantà roleà Domain name: An important role Searchà engineà optimization:à Search engine optimization: Searchà enginesà registration Keywordsà inà Webà siteà description K d i W b it d i ti Metatagà andà pageà titleà keywords Linksà toà otherà sites k h Slide 7-119 Web Site Functionality b i i li Mainà factorsà inà effectivenessà ofà interface Utility Easeà ofà use Topà factorsà inà credibilityà ofà Webà sites: Top factors in credibility of Web sites: Designà look Informationà design/structure g / Informationà focus Organizationà isà importantà forà first timeà users,à butà Organization is important for first? time users but declinesà inà importance Information content becomes major factor attracting Informationà contentà becomesà majorà factorà attractingà furtherà visits Slide 7-120 Factors in Credibility of Web Sites Figureà 7. 11 Slide 7-121 Tableà 7. 9 Slide 7-122 Chapter 8: Ethical, Social, and Political Issues in E-commerce E commerce Chapter 8 Ethics, Law, E-commerce Copyright à © 2010 Pearson Education, Ltd. 2011 Pearson Education, Inc. Slide 8-123 Ethical, Social, Political Issues in E-commerce Internet,à likeà otherà technologies,à can: Internet like other technologies can: Enableà newà crimes Affectà environment Threatenà socialà values Costsà andà benefitsà mustà beà carefullyà considered,à especiallyà whenà thereà areà noà id d i ll h h g g clear? cutà legalà orà culturalà guidelines Slide 8-124 Model for Organizing Issues Issuesà raisedà byà Internetà andà e? commerceà canà beà viewedà atà individual,à social,à andà politicalà levels social and political levels Fourà majorà categoriesà ofà issues: Four major categories of issues: Informationà rights Propertyà rights Property rights Governance Publicà safetyà andà welfare Slide 8-125 Moral Dimensions of Internet Society M l Di i f I S i Figureà 8. 1 Slide 8-126 Basic Ethical Concepts i hi l Ethics Studyà ofà principlesà usedà toà determineà rightà andà wrongà coursesà ofà action Responsibility p y Accountability Liability Lawsà permittingà individualsà toà recoverà damages Dueà process Lawsà areà known,à understood Laws are known understood Abilityà toà appealà toà higherà authoritiesà toà ensureà lawsà appliedà correctly Slide 8-127 Analyzing Ethical Dilemmas l i hi l il Processà forà analyzingà ethicalà dilemmas: 1. 2. 3. 3 4. 5. Identifyà andà clearlyà describeà theà facts Defineà theà conflictà orà dilemmaà andà identifyà theà y higher? rderà valuesà involved Identifyà theà stakeholders Identify the stakeholders Identifyà theà optionsà thatà youà canà reasonablyà take t k Identifyà theà potentialà consequencesà ofà yourà option s Slide 8-128 Candidate Ethical Principles Goldenà Rule Universalism Slipperyà Slope Collectiveà Utilitarianà Principle Riskà Aversion Ri k A i Noà Freeà Lunch Theà Newà Yorkà Timesà Test Theà Socialà Contractà Rule Slide 8-129 Privacy Information Rights Privacy: Moralà rightà ofà individualsà toà beà leftà alone,à freeà fromà surveillanceà orà interferenceà fromà otherà individualsà orà organizations Informationà privacy p y Subsetà ofà privacy Includes: Theà claimà thatà certainà informationà shouldà notà beà collectedà atà all Theà claimà ofà individualsà toà controlà theà useà ofà whateverà h l i f i di id l l h f h informationà isà collectedà aboutà them Slide 8-130 Privacy Information Rights (cont. ) Majorà ethicalà issueà relatedà toà e? commerceà andà privacy:à d i Underà whatà conditionsà shouldà weà invadeà theà privacyà ofà others? Majorà socialà issue:à j Developmentà ofà ââ¬Å"expectationsà ofà privacyâ⬠à andà privacyà norms privacy norms Majorà politicalà issue: Developmentà ofà statutesà thatà governà relationsà D l t f t t t th t l ti betweenà recordkeepersà andà individuals Slide 8-131 Information Collected at E-commerce Sites Dataà collectedà includes Personallyà identifiableà informationà (PII) Anonymousà information Anonymous information Typesà ofà dataà collected yp Name,à address,à phone,à e? mail,à socialà security Bankà andà credità accounts,à gender,à age,à occupation,à B k d di d i education Preferenceà data,à transactionà data,à clickstreamà data,à browserà type Slide 8-132 Social Networks Privacy Socialà networks Encourageà sharingà personalà details Poseà uniqueà challengeà toà maintainingà privacy Facebook sà Beaconà program Facebookââ¬â¢s Beacon program Facebook sà Termsà ofà Serviceà change Facebookââ¬â¢s Terms of Service change Slide 8-133 Profiling Behavioral Targeting Profiling Creationà ofà digitalà imagesà thatà characterizeà onlineà individualà andà groupà behavior Anonymousà profiles A fil Personalà profiles Personal profiles Advertisingà networks Trackà consumerà andà browsingà behaviorà onà Web T k db i b h i W b Dynamicallyà adjustà whatà userà seesà onà screen Buildà andà refreshà profilesà ofà consumers Googleââ¬â¢s AdWords program Slide 8-134 Profiling Behavioral Targeting (contââ¬â¢d) Deepà packetà inspection Businessà perspective: Webà profilingà servesà consumersà andà businesses Increasesà effectivenessà ofà advertising,à subsidizingà freeà content Enablesà sensingà ofà demandà forà newà productsà andà services Criticsà perspective: Underminesà expectationà ofà anonymityà andà privacy Consumersà showà significantà oppositionà toà unregulatedà collectionà ofà personalà information Enablesà weblining Slide 8-135 Internet Government Invasions of Privacy Variousà lawsà strengthenà abilityà ofà lawà enforcementà agenciesà toà monitorà Internetà usersà withoutà i i I ih knowledgeà andà sometimesà withoutà judicialà oversight CALEA,à PATRIOTà Act,à Cyberà Securityà Enhancementà Act,à Homelandà Securityà Act Governmentà agenciesà areà largestà usersà ofà privateà sectorà commercialà dataà brokers sector commercial data brokers Retentionà byà ISPsà ofà userà dataà aà concern Slide 8-136 Legal Protections Inà U. S. ,à privacyà rightsà explicitlyà grantedà orà derivedà from Constitutionà Constitution Firstà Amendmentà à ââ¬â freedomà ofà speechà andà association Fourthà Amendmentà à ââ¬â unreasonableà searchà andà seizure F th A d t bl h d i Fourteenthà Amendmentà à ââ¬â dueà process Specificà statutesà andà regulationsà (federalà andà Specific statutes and regulations (federal and state) Commonà law Slide 8-137 Informed Consent U. S. firmsà canà gatherà andà redistributeà transactionà informationà withoutà individualââ¬â¢sà i i f i ih i di id lââ¬â¢ informedà consent Illegalà inà Europe Informedà consent: Opt? inà Opt out Opt? out Manyà U. S. ? commerceà firmsà merelyà publishà informationà p practicesà asà partà ofà privacyà policyà withoutà providingà forà p p yp y p g anyà formà ofà informedà consent Slide 8- 138 FTCââ¬â¢s Fair Information Practices Principles Federalà Tradeà Commission: Federal Trade Commission: Conductsà researchà andà recommendsà legislationà toà Congress Fairà Informationà Practiceà Principlesà (1998): Fair Information Practice Principles (1998): Notice/Awarenessà (Core) Choice/Consentà (Core) Choice/Consent (Core) Access/Participation Security Enforcement Guidelines,à notà laws Guidelines not laws Slide 8-139 FTCââ¬â¢s Fair Information Practice Principles Notice/Awareness i / Sitesà mustà discloseà informationà practicesà beforeà collectingà data. Includes Sit t di l i f ti ti b f ll ti d t I l d identificationà ofà collector,à usesà ofà data,à otherà recipientsà ofà data,à natureà ofà collectionà (active/inactive),à voluntaryà orà required,à consequencesà ofà refusal,à andà stepsà takenà toà protectà confidentiality,à integrity,à andà qualityà ofà theà data Choice/Consent Thereà mustà beà aà choiceà regimeà inà placeà allowingà consumersà toà chooseà howà theirà informationà willà beà usedà forà secondaryà purposesà otherà thanà supportingà theà transaction,à includingà internalà useà andà transferà toà thirdà parties. Opt? in/Opt? outà mustà beà available. Consumersà shouldà beà ableà toà reviewà andà contestà theà accuracyà andà completenessà ofà dataà collectedà aboutà themà inà aà timely,à inexpensiveà process. Access/Participation ccess/ a c pa o Security y Enforcement Dataà collectorsà mustà takeà reasonableà stepsà toà assureà thatà consumerà informationà isà accurateà andà secureà fromà unauthorizedà use. Thereà mustà beà inà placeà aà mechanismà toà enforceà FIP principles. Thisà canà involveà self? regulation,à legislationà givingà consumersà legalà remediesà forà violations,à orà federalà statutesà andà regulation. di f i l ti f d l t t t d l ti Slide 8-140 FTC Recommendations: Online Profiling Principle p Notice Recommendation Completeà transparencyà toà userà byà providingà disclosureà andà choiceà optionsà onà theà hostà Webà site. ââ¬Å"Robustâ⬠à noticeà forà PIIà (time/placeà ofà collection;à beforeà collectionà begins). Clearà andà conspicuousà noticeà forà non PII. beforeà collectionà begins). Clearà andà conspicuousà noticeà forà non? PII. Opt? inà forà PII,à opt? outà forà non? PII. Noà conversionà ofà non? PIIà toà PIIà withoutà consent. Opt? outà fromà anyà orà allà networkà advertisersà fromà aà singleà pageà consent Opt out from any or all network advertisers from a single page providedà byà theà hostà Webà site. Reasonableà provisionsà toà allowà inspectionà andà correction. Reasonableà effortsà toà secureà informationà fromà loss,à misuse,à orà improperà access. Doneà byà independentà thirdà parties,à suchà asà sealà programsà andà accountingà Done by independent third parties such as seal programs and accounting firms. medicalà topics,à sexualà behaviorà orà sexualà orientation,à orà useà Socialà Securityà medical topics sexual behavior or sexual orientation or use Social Security numbersà forà profiling. Slide 8-141 Choice Access Security Enforcement Restrictedà Collection Advertisingà networksà willà notà collectà informationà aboutà sensitiveà financialà or European Data Protection Directive Privacyà protectionà muchà strongerà inà Europeà thanà U. S. Europeanà approach:à Comprehensiveà andà regulatoryà inà nature p g y Europeanà Commissionââ¬â¢sà Directiveà onà Dataà Protectionà (1998):à (1998): Standardizesà andà broadensà privacyà protectionà inà Europeanà Unionà countries Departmentà ofà Commerceà safeà harborà program: Forà U. S. firmsà thatà wishà toà complyà withà Directive Slide 8-142 Private Industry Self-Regulation Safeà harborà programs: Privateà policyà mechanismà toà meetà objectivesà ofà Pi t li h i t t bj ti f governmentà regulationsà withoutà governmentà involvement e. g. Privacyà sealà programs e g Privacy seal programs Industryà associationsà include: Onlineà Privacyà Allianceà (OPA) Networkà Advertisingà Initiativeà (NAI) CLEARà Adà Noticeà Technicalà Specifications Privacyà advocacyà groups Emergingà privacyà protectionà business Slide 8-143 Insight on Business Chief Privacy Officers hi f i ffi Class Discussion Slide 8-144 Technological Solutions Spyware,à pop? pà blockers Cookieà managers k Anonymousà remailers,à surfing Anonymous remailers surfing Platformà forà Privacyà Preferencesà (P3P):à Comprehensiveà technologicalà privacyà protectionà standard Worksà throughà user sà Webà browser Works through userââ¬â¢s Web browser Communicatesà aà Webà siteââ¬â¢sà privacyà p olicy Comparesà siteà policyà toà userââ¬â¢sà preferencesà orà toà otherà standardsà suchà asà FTCââ¬â¢sà FIPà guidelinesà orà EUââ¬â¢sà Dataà Protectionà Directive Slide 8-145 How P3P Works k Figureà 8. 2(A) Slide 8-146 Insight on Technology The Privacy T Th P i Tug of War: fW Advertisers Vs. Consumers Class Discussion Slide 8-147 Intellectual Property Rights Intellectualà property: Encompassesà allà tangibleà andà intangibleà productsà ofà humanà mind Majorà ethicalà issue: j Howà shouldà weà treatà propertyà thatà belongsà toà others? Majorà socialà issue: Major social issue: Isà thereà continuedà valueà inà protectingà intellectualà propertyà inà theà Internetà age? Majorà politicalà issue: Howà canà Internetà andà e? commerceà beà regulatedà orà governedà toà g g protectà intellectualà property? Slide 8-148 Intellectual Property Protection Threeà mainà typesà ofà protection: Copyright Patent Trademarkà law Trademark law Goalà ofà intellectualà propertyà law: Balanceà twoà competingà interestsà ââ¬â publicà andà B l t ti i t t bli d private Maintainingà thisà balanceà ofà interestsà isà alwaysà M i t i i thi b l fi t t i l challengedà byà theà inventionà ofà newà technologies Slide 8-149 Copyright Protectsà originalà formsà ofà expressionà (butà notà ideas)à fromà beingà copiedà byà othersà forà aà à ideas) from being copied by others for a periodà ofà time Lookà andà feelà copyrightà infringementà lawsuits Fairà useà doctrine Fair use doctrine Digitalà Millenniumà Copyrightà Act,à 1998 Firstà majorà effortà toà adjustà copyrightà lawsà toà Internetà age Implementsà WIPOà treatyà thatà makesà ità illegalà toà make,à distribute,à orà useà devicesà thatà circumventà technology? asedà protectionsà ofà copyrightedà materials Slide 8-150 Patents Grantà ownerà 20? yearà monopolyà onà ideasà behindà anà invention Machines Man? madeà products p Compositionsà ofà matter Processingà methods Inventionà mustà beà new,à non? obvious,à novel Encouragesà inventors g Promotesà disseminationà ofà newà techniquesà throughà licensing Stiflesà competitionà byà raisingà barriersà toà entry Slide 8-151 E-commerce Patents 1998à Stateà Streetà Bankà à Trustà v. Signatureà Financialà Group Businessà methodà patents Ledà toà explosionà inà applicationà forà e? commerceà ââ¬Å"businessà L dt l i i li ti f ââ¬Å"b i methodsâ⬠à patents Mostà Europeanà patentà lawsà doà notà recognizeà M tE t tl d t i businessà methodsà unlessà basedà onà technology Examples Amazonââ¬â¢sà One? clickà purchasing DoubleClickââ¬â¢sà dynamicà deliveryà ofà onlineà advertising Slide 8-152 Trademarks d k Identify,à distinguishà goodsà andà indicateà theirà source Purpose p Ensureà à consumerà getsà whatà isà paidà for/expectedà toà receive Protectà ownerà againstà piracyà andà misappropriation Infringement Marketà confusion Badà faith Dilution Behaviorà thatà weakensà connectionà betweenà trademarkà andà product Slide 8-153 Trademarks Internet Cybersquatting Anticybersquattingà Consumerà Protectionà Actà (ACPA) Cyberpiracy Typosquatting Metatagging M i Keywording y g Deepà linking Framing Slide 8-154 Governance Primaryà questions Whoà willà controlà Internetà andà e? commerce? Whatà elementsà willà beà controlledà andà how? What elements will be controlled and how? Stagesà ofà governanceà andà e? commerce g g Governmentà Controlà Periodà (1970ââ¬â1994) Privatizationà (1995ââ¬â1998) Privatization (1995 1998) Self? Regulationà (1995ââ¬âpresent) Governmentà Regulationà (1998ââ¬âpresent) Slide 8-155 Who Governs E-commerce Internet? Mixedà modeà environment Self? regulation,à throughà varietyà ofà Internetà policyà andà technicalà bodies,à co existsà withà limitedà and technical bodies co? exists with limited governmentà regulation ICANNà :à Domainà Nameà System Internetà couldà beà easilyà controlled,à I t t ld b il t ll d monitored,à andà regulatedà fromà aà centralà location Slide 8-156 Taxation E? commerceà taxationà illustratesà complexityà ofà governanceà andà jurisdictionà issues governance and jurisdiction issues U. S. salesà taxedà byà statesà andà localà government MOTOà retailing E? commerceà benefitsà fromà taxà ââ¬Å"subsidyâ⬠y Octoberà 2007:à Congressà extendsà taxà moratoriumà forà anà additionalà sevenà years an additional seven years Unlikelyà thatà comprehensive,à integratedà rationalà approachà toà taxationà issueà willà beà determinedà forà approach to taxation issue will be determined for someà timeà toà come Slide 8-157 Net Neutrality Currently,à allà Internetà trafficà treatedà equallyà ââ¬â allà activitiesà chargedà theà sameà rate,à noà ll i i i h d h preferentialà assignmentà ofà bandwidth Backboneà providersà wouldà likeà toà chargeà differentiatedà pricesà andà rationà bandwidth 2010,à U. S. ppealsà courtà ruledà thatà FCCà hadà noà authorityà toà regulateà Internetà providers Slide 8-158 Public Safety Welfare Protectionà ofà childrenà andà strongà g sentimentsà againstà pornography Passingà legislationà thatà willà surviveà courtà P i l i l ti th t ill i t challengesà hasà provedà difficult Effortsà toà controlà gamblingà andà restrictà salesà ofà drugsà andà cigarettes sales of drugs and cigarettes Currentlyà mostlyà regulatedà byà stateà law Unlawfulà Internetà Gamblingà Enforcementà Act Slide 8-159 Insight on Society Internet Drug Bazaar Class Discussion Slide 8-160 How to cite 8 Key Element for a Business Model, Papers
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.